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1 INTRODUCTION  

Improvements in the flexibility, accuracy and performance of acoustic simulation tools could help to 
make predictions, low-cost exploration (rapid prototyping) and system design workflows easier, faster 
and more intuitive. Time domain numerical methods used for performing acoustic simulation provide 
useful visual information (Figure 1), as well as reasonably accurate measurement data. These are 
often easily scaled and modified to handle a wide variety of simulations, where other wave based 
modelling methods such as Finite Element and Boundary Element Methods may be more difficult to 
scale in size and complexity due to computational limitations. 

 
Figure 1 Example visual output of an FDTD simulation of reflection behavior with two sound sources and a 

single obstacle in an almost anechoic domain [1] 

One of the early proponents of work on time domain numerical methods for acoustic simulation was 
Bootledooren [2]; whose work involved porting the finite difference time domain (FDTD) and finite 
volume time domain (FVTD) methods from electromagnetics to acoustics, to use in low frequency 
acoustic simulations. This work has been followed on by researchers such as Murphy [3], Bilbao [4], 
Savioja [5] and Hamilton [6] to expand and improve potential use of these methods.  
 
Despite a mature body of supporting work, high frequency and large domain simulations using finite 
difference methods are still relatively uncommon. Previous work focused on combining finite 
difference and ray based methods to simulate large domains [7], but few commercial products have 
utilized this research. In his doctoral thesis [8], one of the authors presented a simple and effective 
implementation of the FDTD method for low frequency modelling, which was the basis for the work 
presented in this paper. 
 
Following key work such as that by Trefethen [9], a number of wave modelling projects have begun 
to explore the Fourier pseudo-spectral time domain method (PSTD), most notably the OpenPSTD 
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project from Eindhoven University of Technology [10]. Caunce and Angus [11] recognised the 
limitations of implementing the FDTD method on general purpose graphical processing units 
(GPGPU) that can be used to improve the speed of FDTD solving and introduced potential 
improvements in execution speed by using spectral differentiation on a GPGPU with the Fourier PSTD 
method. Early work by Caunce and Angus was the basis for the PSTD solver in this study. 
 
In the field of microcontroller development, Doerr [12]–[14] produced work on the sparse finite 
difference time domain method for electromagnetic simulation. PIC microcontrollers are often 
modelled as vastly large electromagnetic simulations of networks of channels that take large 
computational resources, resulting in long simulation times. Doerr suggested that a large proportion 
of the microcontroller domain is made of a dielectric material and is not necessary for the purpose of 
the simulation; it should therefore be possible compute only parts of the domain around 
electromagnetic waves, thus reducing computation time. The sparse finite difference time domain 
method (SFDTD) presented by Doerr essentially uses a moving window method to reduce the size 
of the portion of the domain being solved at any given time step within the simulation. 
 
Methods such as FDTD present benefits for low frequency simulation over other simulation methods 
such as ray based and direct calculation, because characteristics such as modal behaviour is 
accurately accounted for within the model. This is due to solving the acoustic wave equation in second 
order partial differential form; ray based methods assume planar radiation of sound waves and ignore 
the radial propagation of the systems being modelled. Regardless of the time domain method used 
for solving a simulation, it should be possible to set up and solve a simulation in reasonable time 
without requiring specialist computing equipment.  
 
The aim of this work is to explore potential improvements in execution speed of the PSTD and SFDTD 
methods over the FDTD method. In the following section of this paper, a series of simulation test 
cases are described. Following this, the results of the acoustic output and the execution speed of the 
simulation methods are compared. Finally, the execution speed profile of each method is reviewed, 
highlighting where the speed bottlenecks occur in each method.  
 
1.1 Background information 

Large scale and high frequency simulations are often difficult to perform using time domain methods, 
not only because of the large computational resources required to perform the simulations. The time 
required to perform these simulations can be severely limiting. This is due to the requirement to 
equally represent discretisation of the entire domain and various conditions for accuracy and stability 
must be met when solving partial differential equations numerically. These conditions can be difficult 
to overcome, but if it is possible to reduce execution time (and ideally memory requirements) of a 
simulation, using time domain numerical methods could become more accessible for less academic 
users such as sound engineers, loudspeaker designers and undergraduate students. 
 
The basic FDTD method for solving acoustic models involves representing an acoustic system, such 
as a room, as a set of interwoven grids of sound pressure and particle velocity within a fully discretised 
system (Figure 2). The necessary distance between the points in the system is defined by the stability 
of the equations being solved, the physical properties of the system and the highest frequency of 
interest. A wave equation is split up into two reciprocating components, using velocity points to 
calculate surrounding pressure points, and pressure points to calculate surrounding velocity points. 
This is performed in a leapfrog fashion in time, the necessary length of the step also being determined 
by the highest frequency of interest and the stability or the solving method.  
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Figure 2 Generic 2D FDTD stencil [8] 

The Courant-Freidrichs-Lewey (CFL) condition [15] dictates the minimum time and spatial steps 
required for a convergent solution when using a time domain method to solve a set of partial 
differential equations (PDE). The equation for Courant number in the one-dimensional case is: 
 

𝐶 =
|𝑢|∆t

∆𝑥
≤ 𝐶𝑚𝑎𝑥          (1) 

 
The maximum value of Cmax is determined by the stability of the method being used to solve the PDE, 
and for a simple explicit FDTD simulation typically equals 1. Following Nyquist sampling theorem, the 
maximum spatial step in an FDTD simulation is λ/2, tough anecdotal discussion and some literature 

suggests between λ/6 and λ/10 is a better target range for a spatial step, Δx. Simulating a 60 m x 40 

m x 30 m arena up to a frequency of 500 Hz may require 48,326,250 points in the pressure and each 
velocity matrix. Adjusting Eq. 1 for the maximum time step in a 3D simulations gives [16]: 
 

Δ𝑡 ≤
1

𝑐
√

1

∆𝑥2 +
1

∆𝑦2 +
1

∆𝑧2 =  0.0442𝑠        (2) 

 
This time step equates to 92 steps/second in the simulation, resulting in matrices of at least 1.93GB 
when using the native double precision floating point arithmetic of Matlab. When considering a 3 
dimensional arena simulation 8GB of memory could be required for the four matrices which describe 
the domain’s pressure and velocity. It can be difficult to perform large simulations up to high 
frequencies, as the amount of memory required to perform a simulation can quickly become greater 
than that available in non-specialist computer systems. Figure 3 shows the size of each matrix 
required to perform the simulation for maximum frequencies ranging from 500 Hz to 20 kHz. 
 
Another fundamental problem with FDTD is the requirement to constantly perform non-contiguous 
memory accesses to perform calculations. Computer memory access (particularly in the CPU cache) 
is optimised for contiguous accesses in one direction. FDTD can require the system to access 
memory in an orthogonal direction to optimum around 50% of the time and also requires the system 
to index into two large blocks of memory simultaneously. 
 
Two similar methods to FDTD that may execute faster for large domains are PSTD and SFDTD. The 
PSTD follows a similar form to FDTD in most respects. The primary difference is that differentiation 
in PSTD is performed in the frequency domain. Each matrix is multiplied by the impulse response of 
an ideal differentiator in the frequency domain, before being used to calculate new values of the 
reciprocating field. While this method has the potential to be much faster than FDTD (by leveraging 
the speed of optimised memory access and discrete Fourier transforms), it requires a perfectly 
matched layer (PML) to overcome Gibbs phenomenon and can suffer from aliasing due to the non-
periodic nature of the system being simulated [17]. A PML is a boundary layer surrounding the 
computational domain that is non-reflective at any frequency or angle of incidence. The PML act as 
a vacuum and absorbs all energy that enters the boundary layer [18].    
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Figure 3 Domain matrix size vs frequency for an FDTD simulation of a 60 m x 40 m x 30 m arena 

SFDTD involves windowing portions of the domain that are above a given threshold. This window is 
used as a guide allowing for just the necessary portions of the domain to be computed. This method 
is very much in early development in acoustics and previously published literature is scarce. As such, 
a robust and well validated implementation of SFDTD in acoustics has yet to be reported. 
Furthermore, the method may only be useful for speed improvements before the level of the diffuse 
field is relatively high (i.e. when strong reflections are propagating across the domain). This method 
would ideally use a high order FDTD topology that doesn’t suffer as distinctly from numeric dispersion 
as the 2nd order approach [19, 20]. 

 
2 ACOUSTIC MODEL IMPLEMENTATION  

In order to test the execution speed of FDTD, PSTD and SFDTD, all three methods were implemented 
as functions in Matlab. Code development and speed testing was executed on a PC with the following 
characteristics: 
 

 Operating System:  Windows 10 

 CPU:    i5 4960k Overclocked to 4.5GHz and 1.227V 

 RAM:    16GB DDR3 ram at 3875 MHz 

 Motherboard:   Asus Gryphon Armour Edition with Z97 chipset 

 GPU:    Nvidia GTX 1070  
 

Th computer used standard consumer grade components and was configured using inbuilt automatic 
tools, thus requiring little specialist configuration knowledge. 
 
Initially FDTD was implemented as a function based on previous work by one of the authors [8]. A 2D 
version and a 3D version were implemented. The differentiation in FDTD is performed by indexing 
discrete points of pressure and velocity matrices and calculating updated local values of each based 
on the previous and surrounding values of the related variable at each point in the domain. Following 
this, a test was executed to check that a stimulus is propagated across the domain without significant 
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distortion. The modelled domain was a 5 m x 4 m x 3 m rectangle and had partially absorbing 
boundaries with a frequency-dependent absorption coefficient of 0.45. The maximum analysis 
frequency was 5 kHz. Stimuli used were three sets of 10 cycles of 1 kHz windowed tone burst, with 
a rest period of 3 times the length of each burst.  In this case, each series of three bursts lasted for 
0.1 s, following which there was 0.1 s of silence to allow for decay of the reverberation. The single 
source was positioned 1 m away from a corner of the domain. Five locations of the domain (near the 
corners and the centre) were measured. Figure 4 shows the normalised source and receiver signals 
in the time and frequency domains.   
 

 
 

Figure 4 Response of a FDTD simulation showing: stimulus vs measured signals (normalized) (top), time 
domain response at different positions in the domain (middle) and smoothed frequency domain representation 

of the measurements at each position in the domain (bottom) 

The output shows that the modelled frequency across the domain is the same as the stimulus and no 
high amplitude oscillatory components are present. The time domain behaviour of the simulation 
appears to show the expected propagation delay between measurement points, with decay that would 
suggest the simulation is convergent.  
 
Using the inbuilt code profiler tool in Matlab it was possible to analyse the performance of this FDTD 
implementation to determine where the processing bottlenecks are. Figure 5 shows the Matlab profiler 
output of analysis of the 3D FDTD model. The slowest parts of this implementation are where 
differentiation is occurring (i.e. where the system is having to perform multiple memory accesses to 
separate large matrices). Managing or reducing these accesses may help improve efficiency.  
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Figure 5 3D FDTD execution code profiling 

 
PSTD was implemented as a set of Matlab functions in a similar way to FDTD and was based on the 
work by Caunce & Angus [11]. To implement partially absorbing boundary conditions, work by Spa et 
al [21] was utilized. The differentiation in PSTD is handled by performing a discrete Fourier transform 
on one dimension of the domain and multiplying the frequency domain spatial data with the impulse 
response of an ideal differentiator (Figure 6). The inverse discrete Fourier transform of the 
differentiated spatial domain data is then used to calculate updated values of the reciprocating field. 
The differentiation is performed singularly in all spatial dimensions of interest. This method of 
differentiation may be preferential to FDTD, because the differentiation for calculating any one point 
includes differentiation of all points in the domain that are linearly coupled.  
 

 
Figure 6 Differentiation matrix for 2D PSTD on the real axis, differentiating in the x-dimension 

This differentiation approach not only increases accuracy, but the use of optimised libraries for the 
Fourier transform and vectorisation can be leveraged by the compiler to increase the speed of 
computations for differentiation. The same simulation as described for FDTD was used with PSTD, 
with a maximum frequency of 5 kHz instead of the 2 kHz of used for the FDTD simulation. This 
sampling rate overhead was chosen due to aliasing occurring during early testing and development 
of the PSTD implementation. Figure 7 shows the PSTD output with the third plot adjusted for the 
higher maximum frequency.  
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Figure 7 Response of a PSTD simulation showing: stimulus vs measured signals (normalized) (top), 
time domain response at different positions in the domain (middle) and smoothed frequency domain 

representation of the measurements at each position in the domain (bottom) 

The frequency domain response shows a centre frequency at 1 kHz, the same as the stimulus. The 
width and shape of the window is similar to that from the FDTD simulation, but with a spectral tilt 
leaning toward low pass behaviour. The rate at which the propagating wave reached measurement 
points appears to be different to the results from the FDTD simulation, suggesting that the source 
location may be different between the two simulations. Though this is likely to be true due to the grid 
point quantisation difference between the two implementations, further analysis of PSTD may be 
required to achieve comparable results to the FDTD method. Although further work could be 
undertaken to diagnose this discrepancy, the overall performance of the system is acceptable enough 
to use this algorithm for speed testing. 
 
SFDTD was implemented based on the previous FDTD approach along with inspiration from the work 
of Doerr [12]. Doerr’s work in computational electromagnetics uses a list-based method for handling 
window shape and position, which may not be appropriate for an elastic wave system where a 
diffusely fluctuating field is desirable. The SFDTD approach in this study was to create a normalised 
indexing window based on points above a given threshold of absolute pressure within the domain.  
 
The normalised shape of the domain (around a threshold) was smoothed using a Gaussian image 
filtering technique to ensure that the window’s surrounding points of significant pressure are also used 
within the differentiation (Figure 8). This allows wave fronts to propagate naturally across the domain 
unimpeded by the window. The window is used to restrict the number of points within the domain that 
are calculated. Due to time constraints with this study, threshold optimization wasn’t performed and 
a value of 40 dB was used throughout. Further work must be undertaken to determine ideal smoothing 
methods and threshold values. The output of the SFDTD model are given in Figure 9. 
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Figure 8 SFDTD 2D model: example travelling stimulus (left) and windowed domain (right) 

 
Figure 9 Response of a SFDTD simulation showing: stimulus vs measured signals (normalized) 

(top), time domain response at different positions in the domain (middle) and smoothed frequency 
domain representation of the measurements at each position in the domain (bottom) 

The centre frequency of the received signals is centred at 1 kHz which is the same as the stimulus. 
The frequency domain analysis of the measured signals highlights a potential DC offset at all 
measurement points. This may be caused by the behaviour of the soft source excitation method, as 
highlighted by Murphy et al [3] or a change in the domain impedance caused by use of the window. 
Also, the amplitude of the first stimulus at the top left measurement point is significantly lower than in 
the other simulation methods. This may be due to the expanding shape of the initial burst, which could 
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be truncating the numerical dispersion and small fluctuations that are sufficiently far from wave fronts 
or areas of energy maxima. This behaviour may be a trade-off for faster computation in the early 
stages of a simulation. Further investigation is required, though. Figure 10 shows the computation 
time for a set of 2D simulations using the SFDTD method. 

 
 

Figure 10 2D SFDTD execution time per time step for a range of domain sizes 

This figure highlights the behaviour of the SFDTD method, reducing early computation times before 
a steady state diffuse field is reached. Using this method to reduce computation time may be 
appropriate when calculating the early reflection behaviour of a large room, when the wave fronts that 
are propagating are distinct compared to the size of the domain, but doesn’t offer any advantages 
over standard FDTD when examining a diffuse field. 
 

3 EXECUTION SPEED COMPARISION 

To examine the execution speed, each approach was used to model an increasingly-large rectangular 
3D domain. The execution speed for the first 2000 time steps of each method was measured using 
the inbuilt Tic/Toc function in Matlab. A set of 5 domain sizes were (Table 1). 
 

 

Table 1 Set of domain sizes and domain cells for each time domain method 
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These domain sizes were chosen by finding the maximum domain size that could fit in the computer’s 
memory and downscaling to create 5 steps. Further work on very large domain sizes should handle 
temporary data storage in binary files on hard-disk, allowing a simulation to handle matrices of an 
optimal size in memory. The PSTD domain sizes require significantly fewer cells than the S/FDTD 
methods, due to the nature of stability in the PSTD method. As PSTD differentiation is undertaken 
using all linearly contiguous cells, the order of the differentiation is higher than that of FDTD and fewer 
points per wavelength are required for frequency domain accuracy [22]. 
 
When running each simulation, the supporting code around the simulation was kept to a similar format 
and only execution time was measured. No plotting was performed during the speed tests due to the 
single threaded nature of internal engine of Matlab. This would have significant performance 
implications on the overall speed of the simulation. The maximum frequency of interest for the 
simulations was 500 Hz, which was chosen due to the memory constraints described above.  
 
3.1 Results 

Figures 11 shows the mean time step execution speed for each model and domain size. These results 
suggest that using the PSTD method gives significantly faster average execution times than using 
the FDTD and SFDTD methods. This may be because of the utilization of optimised computation 
methods, and the relaxed domain attributes required for a simulation (i.e. smaller matrices than 
required in FDTD and SFDTD to simulate large domains, up to higher frequencies). However, 
implementing partially-absorbing boundary conditions, handling obstacles, and minimizing aliasing 
may be non-trivial work, where FDTD and SFDTD may provide easier-to-adjust simulation setups for 
different problems. 
 

 
 

Figure 11 Mean execution time for each model for a range of domain sizes (linear time scale) 

The results also show that SFDTD reduced average computation times only with the largest domain 
size and increased computation time for all other sizes. This is partially due to the non-optimised 
implementation of the method and the threshold of the window, as well as the extra number of 
computations required to create and then reference the window function (although, modelling larger 
domains is likely to give more significant improvements over standard FDTD). As shown in Figure 10, 
before the stimulus has much effect on the domain, the number of extra calculations being undertaken 
to create the window may be large enough to offset any benefits that such a window might give in 
terms of total domain used in computation, once wave fronts are propagating across the domain. 
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4 CONCLUSION & FURTHER WORK 

This study gives an indication of potential improvements in execution speed of time domain methods, 
notably when using spectral methods. A window-based method of reducing domain computation area 
may improve the execution speed in very large simulations, but further work is required to confirm 
this. Differentiation is likely to be the process that is slowest. Addressing the speed of differentiation 
using different matrix sizes, indexing methods or strategies may improve execution speed of finite 
difference methods.  

 
This research presented here has some key limitations. The implementations of each method 
presented are not mature and required fine-tuning to provide high quality results, both for measuring 
acoustic behaviour and achieving optimal performance. None of the methods presented acoustic 
behaviour that was easy to validate, and the number of time steps used in the final tests were small 
(due to memory limitations). A change in the initial conditions of the speed tests may have given 
different execution speed results, due to SFDTD’s window function taking a long time to compute. 

 
While this work shows good evidence that improvements can be made to the execution time, there is 
a further work required to solidify and validate these results. This work includes, but is not limited to:  
 

 Experimenting with the process of SFDTD window calculation 

 Determining the optimal window threshold for the SFDTD method 

 Experimenting with methods to reduce the number of points required to represent a domain 

 Examination and improvement of the output of PSTD, including performance of the PML and 
experimentation with Chebyshev PSTD  

 Investigation into obstacles and partially absorbing boundary conditions in PSTD 
 

Although more work needs to be done to improve the efficiency of time domain methods, this work 
shows potential for improvement. Further development of these methods could provide scalable and 
intuitive tools for simulating and analysing acoustic propagation within large domains without the need 
for specialist computing equipment.  
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